Some results about unbounded convergences in Banach lattices

author

Abstract:

Suppose E is a Banach lattice. A net  in E is said to be unbounded absolute weak convergent ( uaw-convergent, for short) to  provided that the net  convergences to zero, weakly.  In this note, we further investigate unbounded absolute weak convergence in E. We show that this convergence is stable under passing to and   from ideals and sublattices. Compatible with un-convergenc, we show that uaw-convergence is topological, which means that E with uaw-topology forms a topological vector space. We consider some closedness   properties  for this type of convergence. Some examples   are given to make the context  more understandable. Finally, we introduce the notion of strongly continuous operators between Banach lattices and investigate some properties about them. Specially, we characterize Banach lattices with a strong unit in tems of this type of operators.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Unbounded Norm Convergence in Banach Lattices

A net (xα) in a vector lattice X is unbounded order convergent to x ∈ X if |xα − x| ∧ u converges to 0 in order for all u ∈ X+. This convergence has been investigated and applied in several recent papers by Gao et al. It may be viewed as a generalization of almost everywhere convergence to general vector lattices. In this paper, we study a variation of this convergence for Banach lattices. A ne...

full text

Unbounded Norm Topology in Banach Lattices

A net (xα) in a Banach lattice X is said to un-converge to a vector x if ∥∥|xα−x|∧u∥∥→ 0 for every u ∈ X+. In this paper, we investigate un-topology, i.e., the topology that corresponds to un-convergence. We show that un-topology agrees with the norm topology iff X has a strong unit. Un-topology is metrizable iff X has a quasi-interior point. Suppose that X is order continuous, then un-topology...

full text

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

full text

Some results on $L$-complete lattices

The paper deals with special types of $L$-ordered sets, $L$-fuzzy complete lattices, and fuzzy directed complete posets.First, a theorem for constructing monotone maps is proved, a characterization for monotone maps on an $L$-fuzzy complete lattice is obtained, and it's proved that if $f$ is a monotone map on an $L$-fuzzy complete lattice $(P;e)$, then the least fixpoint of $f$ is meet of a spe...

full text

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  0- 0

publication date 2022-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023